用NewsHub追踪最热门的话题,分分钟更新,不容错过。 现在马上安装。

天舟一号成功发射 这已经引起了欧空局的注意

2017年4月20日 下午10:30
8 0
天舟一号成功发射 这已经引起了欧空局的注意

  中国科学院空间应用工程与技术中心是载人航天工程空间应用系统的总体单位,代表中国科学院抓总负责载人航天空间科学与应用任务的规划、实施及成果产出与推广,具体承担工程研制的组织管理,系统设计、集成、测试,可靠性保障,在轨技术支持,有效载荷运控管理,数据获取及应用成果的推广服务等系统技术支持、支撑、保障、服务工作。

  这个项目包括两个部分,空间蒸发与冷凝科学实验,和两相系统实验平台关键技术研究,负责人是中国科学院力学研究所刘秋生研究员。参与研究的除了中国科学院力学所,还有中山大学、中国科学院空间应用中心和东南大学。

  这是我国首次空间冷凝与蒸发相变传热科学与热控技术实验研究,也是我国首次在一个空间实验装置中开展2种以上科学与技术实验的多目标流体物理空间实验。

  实验有两个目的,在科学上,可望能够探究空间蒸发与冷凝相变传热特殊规律;在技术上,可望验证本次实验中采用的空间两相回路热控与实验流体管理等关键实验技术。

  空间飞行器(如载人空间站、卫星)中所处的微重力环境,没有自然对流,这将极大影响蒸发与冷凝相变过程,热设备的工作环境也将与我们地球上完全不同。

  现在我们对微(变)重力环境中的相变界面热毛细流动、空间两相流体界面的瑞利-泰勒(R-T)不稳定性、毛细输运稳定性等新问题和新现象的相关理论可以说是认知匮乏,但是,上图中所展示的空间热流体设备和空间在轨流体管理都需要这方面研究的支持。

  要想科学准确的回答上述问题,需要利用空间微重力环境开展空间实验,研究空间相变传热的特殊现象,认识其特殊规律,进而掌握克服空间相变传热不利影响的新方法和新技术,用于研制能很好适用于太空环境中的热设备。

  Marangoni-Bénard对流是流体物理经典问题之一,已有长达一百多年的丰富研究历史。非牛顿流体层在一定的温度梯度驱动下会发生自然对流,如果流体层上表面是自由表面,且由表面张力引发的对流流动称为MarangoniBénard对流或热毛细对流。对于不考虑表面存在蒸发相变液层呈现出规则的六角形MarangoniBénard对流涡胞来说(见下面左图),可以用经典理论可以很好的解释;但对于有较强表面蒸发液层(如酒精)内出现的MarangoniBénard对流涡胞不再保持规则形式(如下面右图所示),现有理论却不能很好解释具有蒸发效应的液层中对流形式变化的原因。引起上述这一理论与实验现象之间的明显差异,只是因为液层表面的蒸发。

  传统热动力学平衡态模型无法解释蒸发表面温度梯度驱动流动现象,需要引进相变界面非平衡态模型,还需要考虑气体环境对界面能量传输的影响,若气体为该液体的纯蒸汽,存在热毛细对流,若气体为两种或多种气体的混合物,情况更加复杂。

  蒸发与冷凝相变流体界面具有比一般流体界面更为复杂的流体动力学现象,如自由表面流动更无规律可循,热边界条件不再遵循简单的工程热力学模型,空间微重力环境使得流体界面效应得到相对的放大,并同时剥离了地面重力引起的浮力效应对相变界面流动与传热的主要影响。

  因此,我们在空间可以实现对液体变成气体的蒸发界面和蒸汽变成液体的冷凝界面热、质交换物理模型的精准验证和理论分析,给出更普适的相变界面热动力学理论模型。

  本项目将在这两个阶段20多天内进行在轨科学实验,分别在轨开展蒸发液层、蒸发液滴和冷凝三种类型的科学研究、两相流体控制技术验证四个阶段的空间实验,实验时间共计200多小时。

  ?这是国内首次实现对微重力蒸发与冷凝过程中多物理量场的实时观测,可望获得空间蒸发和冷凝液膜的时空演变规律、相变非平衡热动力学特征等研究方面的新成果;预期能够验证多项空间在轨两相流体管理与热控等关键技术,为空间站两相系统实验柜的工程研制奠定技术基础;在此领域内率先获得科学研究成果和实验技术突破。

  项目负责人—中科院力学研究所刘秋生研究员是国际天地两相应用系统(ITT)先进研究联合组织的中方科学成员和联系人,通过开展该项实验研究,将提高我国在微重力流体物理研究领域的国际影响和关注度。

来源: tech.huanqiu.com

分享社交网络:

评论 - 0